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1 One-to-one matching: the marriage model

1.1 Basic model

• A marriage market is a triple (M,W,P ):

– M is a finite set of men.

– W is a finite set of women.

– P is a preference profile.

P (m) is a preference relation of man m over W ∪ {m}.

P (w) is a preference relation of woman w over M ∪ {w}.

• Representation of preference:

P (m) = w1, w5, [w2, w3],m,w4 (1.1)

or equivalently

w1 �m w5 �m w2 ∼m w3 �m m �m w4 (1.2)

• If agent k ∈M ∪W prefers to remain single rather than be matched to agent j, i.e., if

k �k j, then j is unacceptable to k.

• Sometimes, we ignore the preference of men (women) on the unacceptable agents be-

cause they are not matched with unacceptable women (men) in plausible matchings.

1This note is prepared for the class at University of Seoul. This note follows Roth and Sotomayor (1990)
and theorems are numbered as in the book. This note may have some typos and errors. If you find any error
or typo, please let me know via e-mail (chomhmh@uos.ac.kr).

2Department of Economics, University of Seoul. E-mail: chomhmh@skku.edu
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This allows us to consider the preference of each man (woman) over the acceptable

women (men) and to represent his (her) preference as

P (m) = w1, w5, [w2, w3]

or equivalently

w1 �m w5 �m w2 ∼m w3

instead of (1.1) and (1.2).

• An outcome of the marriage market (M,W,P ) is a matching

µ : M ∪W →M ∪W

such that µ(m) = w if and only if µ(w) = m and for all m and for all w, µ(w) ∈M∪{w}
and µ(m) ∈ W ∪ {m}.

• Representation of matching: M = {m1,m2,m3,m4,m5} and W = {w1, w2, w3, w4}

µ =
w4 w1 w2 w3 (m5)

m1 m2 m3 m4 m5

or equivalently

µ =
w1 w2 w3 w4 (m5)

m2 m3 m4 m1 m5

• Given the preference %m of m ∈M (or w ∈ W ), we can induce the preference of m (or

w ∈ W ) over the matchings: for matchings µ and µ′,

µ %m µ′ ⇐⇒ µ(m) %m µ′(m).

1.2 Stable matchings

• A matching µ is blocked by an individual k ∈M ∪W , if k prefers being single to being

matched with µ(k), i.e., k �k µ(k).

• A matching µ is blocked by a pair (m,w) ∈ M ×W , if they prefer each other to their
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partners under µ, i.e.,

w �m µ(m) and m �w µ(w).

• A matching µ is stable, if it is not blocked by any individual or pair of agents.

• When the men and women have strict preference, a stable matching is Pareto-efficient.

(Why?)

• The weak core is the set of matchings µ such that there exists no matching ν and

coalition T ⊆M ∪W such that for all k ∈ T , ν(k) �k µ(k) and ν(k) ∈ T .

• The (strong) core is the set of matchings µ such that there exists no matching ν and

coalition T ⊆ M ∪W such that for all k ∈ T , ν(k) %k µ(k) with ν(i) �i µ(i) for some

i ∈ T , and for all k ∈ T in ν(k) ∈ T .

• S: set of stable matchings

CW : set of stable matchings

CS: set of stable matchings

Lemma 1. In the marriage model, when preferences are general,

CS ⊆ CW = S.

When preferences are strict,

CS = CW = S.

• A stable matching is also referred to as a core matching.

Men-proposing deferred acceptance algorithm

Step 0: If some preferences are not strict, arbitrarily break ties (e.g. if some m is indifferent

between w and w′, order them consecutively in an arbitrary manner)

Step 1: Each man m proposes to his 1st choice (if he has any acceptable choices).

Each woman rejects any unacceptable proposals and, if more than one acceptable proposal

is received, “holds”the most preferred.

If no proposals are rejected, then match each woman to the man (if any) whose proposal she
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is “holding” and terminate the procedure.
...

Step k: Any man who was rejected at step k− 1 makes a new proposal to his most preferred

acceptable mate who has not yet rejected him. (If no acceptable choices remain, he makes

no proposal.)

Each woman “holds” her most preferred acceptable offer to date, and rejects the rest.

If no proposals are rejected, then match each woman to the man (if any) whose proposal she

is “holding” and terminate the procedure.

Example 1 (Example of the deferred acceptance procedure). Consider a marriage market

(M,W,P ) such that

P (m1) = w1, w2, w3, w4 P (w1) = m2,m3,m1,m4,m5

P (m2) = w4, w2, w3, w1 P (w2) = m3,m1,m2,m4,m5

P (m3) = w4, w3, w1, w2 P (w3) = m5,m4,m1,m2,m3

P (m4) = w1, w4, w3, w2 P (w4) = m1,m4,m5,m2,m3

P (m5) = w1, w2, w4

The deferred acceptance procedure in which the men make an offer results in the stable

matching

µM =
w1 w2 w3 w4 (m5)

m1 m2 m3 m4 m5

.

The deferred acceptance procedure in which the women make an offer results in the stable

matching

µW =
w4 w1 w2 w3 (m5)

m1 m2 m3 m4 m5

.

♦

Theorem 1 (Gale and Shapley). A stable matching exists for every marriage market.

Proof. Consider the men-proposing deferred acceptance algorithm.

The algorithm stops after any step in which no man is rejected. At this point, every man is

either engaged to some woman or has been rejected by every woman on his list of acceptable

women. The marriages are now consummated, with each man being matched to the woman
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to whom he is engaged. Women who did not receive any acceptable proposal, and men who

were rejected by all women acceptable to them, will stay single.

This completes the description of the algorithm, except that we have described it as if

all agents have strict preferences. The modification required in case some man or woman

is indifferent between two or more possible mates is simple. At any step of the algorithm

at which some agent must indicate a choice between two mates who are equally well liked,

introduce some fixed “tie-breaking” rule (e.g., when an agent is indifferent, proceed as if the

preferences are according to alphabetical order of family names, or as if agents prefer mates

who are closer to them in age, etc.). Such a tie-breaking rule therefore specifies, arbitrarily, to

which woman a man will propose when he is indifferent about his next proposal, and which

man a woman will keep engaged when she is indifferent among more than one most favored

suitors.

The algorithm must eventually stop because there are only a finite number of men and

women, and no man proposes more than once to any woman. The outcome that it produces is

a matching, since each man is engaged at any step to at most one woman, and each woman is

engaged at any step to at most one man. Furthermore, this matching is individually rational,

since no man or woman is ever engaged to an unacceptable partner.

To see that the matching µ produced by the algorithm is stable, suppose some man m

and woman w are not married to each other at µ, but m prefers w to his own mate at

µ. Then woman w must be acceptable to man m, and so he must have proposed to her

before proposing to his current mate (or before being rejected by all of the women he finds

acceptable). Since he was not engaged to w when the algorithm stopped, he must have been

rejected by her in favor of someone she liked at least as well. Therefore w is matched at µ to

a man whom she likes at least as well as man m, since preferences are transitive (and hence

acyclic), and so m and w do not block the matching µ. Since the matching is not blocked by

any individual or by any pair, it is stable.

Example 2 (Roommate problem (Gale and Shapley)). There is a single set of n people who

can be matched in pairs (to be roommates in a college dormitory, or partners in paddling a

canoe). Each person in the set ranks the n− 1 others in order of preference. An outcome is

a matching, which is a partition of the people into pairs. To keep things simple, suppose the

number n of people is even. A stable matching is a matching such that no two persons who

are not roommates both prefer each other to their actual partners.
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Consider four people: a, b, c, and d, with the following preferences:

P (a) = b, c, d

P (b) = c, a, d

P (c) = a, b, d

P (d) = arbitrary

In this example, we can see that there is no stable matching. ♦

Example 3 (Man-woman-child marriage problem (Alkan)). There are three sets of people:

men, women, and children. A matching is a division of the people into groups of three,

containing one man, one woman, and one child. Each person has preferences over the sets

of pairs he or she might possibly be matched with. A man, woman, and child (m,w, c) block

a matching µ if m prefers (w, c) to µ(m); w prefers (m, c) to µ(w), and c prefers (m,w) to

µ(c). A matching is stable only if it is not blocked by any such three agents.

Consider three men, three women, and three children, with the following preferences:

P (m1) = (w1, c3), (w2, c3), (w1, c1), . . . (arbitrary)

P (m2) = (w2, c3), (w2, c2), (w3, c3), . . . (arbitrary)

P (m3) = (w3, c3), . . . (arbitrary)

P (w1) = (m1, c1), . . . (arbitrary)

P (w2) = (m2, c3), (m1, c3), (m2, c2), . . . (arbitrary)

P (w3) = (m2, c3), (m3, c3), . . . (arbitrary)

P (c1) = (m1, w1), . . . (arbitrary)

P (c2) = (m2, w2), . . . (arbitrary)

P (c3) = (m1, w3), (m2, w3), (m1, w2), (m3, w3), . . . (arbitrary)

1. All matchings that give m1 (resp. m2 and w2) a better family than (m1, w1, c1) (resp.

(m2, w2, c2)) are unstable: Any matching containing (m1, w1, c3) or (m2, w2, c3) is blocked

by (m3, w3, c3); Any matching containing (m1, w2, c3) is blocked by (m2, w3, c3).

2. Any matching that does not contain (m1, w1, c1) (resp. (m2, w2, c2)) is either blocked

by (m1, w1, c1) (resp. (m2, w2, c2)) or is unstable as already shown in 1 above.

3. (m1, w2, c3) blocks any matching that contains (m1, w1, c1) and (m2, w2, c2).

Thus, there is no stable matching in this example. ♦
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Example 4 (Many-to-one matching). Consider a set of firms and a set of workers. Each

worker can work for at most one firm and has preferences over those firms he or she is willing

to work for. Each firm can hire as many workers as it wishes and has preferences over those

subsets of workers it is willing to employ. It is clear what a matching is in this case, and a

firm F and a subset of workers C block a matching µ if F prefers C to the set of workers

assigned to it at µ, and every worker in C who is not assigned to F prefers F to the firm he

or she is assigned by µ. Consider two firms and three workers with the following preferences:

P (F1) = {w1, w3}, {w1, w2}, {w2, w3}, {w1}, {w2}
P (F2) = {w1, w3}, {w2, w3}, {w1, w2}, {w3}, {w1}, {w2}

P (w1) = F2, F1

P (w2) = F2, F1

P (w3) = F1, F2

The only individually rational matchings without unemployment are:

µ1 =
F1 F2

{w1, w3} {w2}
, which is blocked by (F2, w1)

µ2 =
F1 F2

{w1, w2} {w3}
, which is blocked by (F2, {w1, w3})

µ3 =
F1 F2

{w2, w3} {w1}
, which is blocked by (F2, {w1, w2})

µ4 =
F1 F2

{w2} {w1, w3}
, which is blocked by (F1, {w2, w3})

µ5 =
F1 F2

{w1} {w2, w3}
, which is blocked by (F2, {w1, w3})

Now observe that any matching that leaves w1 unmatched is blocked either by (F1, w1) or by

(F2, w1); any matching that leaves w2 unmatched is blocked either by (F1, w2), (F2, w2), or

(F2, {w2, w3}). Finally, any matching that leaves w3 unmatched is blocked by (F2, {w1, w3}).
♦

Theorem 2 (Gale and Shapley). When all men and women have strict preferences, there

always exists a men-optimal stable matching (that every man likes at least as well as any

other stable matching), and a women-optimal stable matching.
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Furthermore, the matching µM produced by the deferred acceptance algorithm with men-

proposing is the men-optimal stable matching. The women-optimal stable matching is the

matching µW produced by the algorithm when the women propose.

• A woman w and a man m are achievable for each other in a marriage market (M,W,P )

if m and w are paired at some stable matching.

Proof of Theorem 2. When all men and women have strict preferences, we will show that

in the deferred acceptance algorithm with men proposing, no man is ever rejected by an

achievable woman. Consequently the stable matching µM that is produced matches each

man to his most preferred achievable woman, and is therefore the (unique) men-optimal

stable matching.

The proof is by induction. Assume that up to a given step in the procedure no man has

yet been rejected by a woman who is achievable for him. At this step, suppose woman w

rejects man m. If she rejects m as unacceptable, then she is unachievable for him, and we

are done. If she rejects m in favor of man m′, whom she keeps engaged, then she prefers m′

to m. We must show that w is not achievable for m.

We know m′ prefers w to any woman except for those who have previously rejected him,

and hence (by the inductive assumption) are unachievable for him. Consider a hypothetical

matching µ that matches m to w and everyone else to an achievable mate. Then m′ prefers

w to his mate at µ. So the matching µ is unstable, since it is blocked by m′ and w, who each

prefer the other to their mate at µ. Therefore there is no stable matching that matches m

and w, and so they are unachievable for each other, which completes the proof.

• Let µ �M µ′ denote that all men like µ at least as well as µ′, with at least one man

having strict preference.

µ %M µ′ means that µ �M µ′ or that all men are indifferent between µ and µ′.

• Then �M is a partial order on the set of matchings, representing the common prefer-

ences of the men.

• Similarly, we define �W and %W as the common preference of the women.

Theorem 3 (Knuth). When all agents have strict preferences, the common preferences of

the two sides of the market are opposed on the set of stable matchings: if µ and µ′ are stable

matchings, then all men like µ at least as well as µ′ if and only if all women like µ at least

as well as µ′. That is, µ �M µ′ if and only if µ′ �W µ.
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Proof. Let µ and µ′ be stable matchings such that µ �M µ′. We will show that µ′ �W µ.

Suppose it is not true that µ′ �W µ. Then there must be some woman w who prefers

µ to µ′. Then, woman w has a different mate at µ and µ′, and consequently so does man

m = µ(w). Since m also has strict preferences, m and w form a blocking pair for the matching

µ′. This contradicts the assumption that µ′ is stable. Therefore, µ′ �W µ, as required.

Corollary 1. When all agents have strict preferences, the M-optimal stable matching is the

worst stable matching for the women; that is, it matches each woman with her least preferred

achievable mate. Similarly, the W -optimal stable matching matches each man with his least

preferred achievable mate.

• For any matchings µ and µ′, define a function

λ = µ ∨M µ′

on the set M ∪W as, for all m ∈M ,

λ(m) =

{
µ(m) if µ(m) �m µ′(m)

µ′(m) otherwise

and for all w ∈ W ,

λ(w) =

{
µ(m) if µ(m) ≺w µ

′(m)

µ′(m) otherwise

• For any matchings µ and µ′, define a function

ν = µ ∧M µ′

on the set M ∪W as, for all m ∈M ,

ν(m) =

{
µ(m) if µ(m) ≺m µ′(m)

µ′(m) otherwise

and for all w ∈ W ,

ν(w) =

{
µ(m) if µ(m) �w µ

′(m)

µ′(m) otherwise
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• The functions λ = µ ∨M µ′ and ν = µ ∧M µ′ are not necessarily matchings, and even

when λ and ν are matchings, they are not necessarily stable.

Lattice

• L: a set endowed with a partial order �.

• An upper bound of a subset X ⊂ L is an element a ∈ L such that a � x for all x ∈ X.

An lower bound of a subset X ⊂ L is an element a ∈ L such that a � x for all x ∈ X.

• supX: supremum of X, the least upper bound of X if it exists.

inf X: infimum of X, the greatest lower bound of X if it exists.

• Note that, if supX (or, inf X) exists, it is unique.

• A lattice is a partially ordered set L, if any two of whose elements x and y have a “sup”,

denoted by x ∨ y and an “inf”, denoted by x ∧ y.

• x ∨ y is called a join of x and y.

x ∧ y is called a meet of x and y.

• A lattice is complete when each of its subsets X has a “sup” and an “inf” in L.

Example 5. {0, 1, . . . , 10}2 and usual vector partial order ≥

max = (10, 10)

min = (0, 0)

B

A A ∨B = sup{A,B}

A ∧B = inf{A,B}
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Theorem 4 (Lattice theorem (Conway)). When all preferences are strict, if µ and µ′ are

stable matchings, then the functions λ = µ ∨M µ′ and ν = µ ∧M µ′ are both matchings and

they are both stable.

Proof. Step 1: λ is a matching (λ(m) = w if and only if λ(w) = m).

[λ(m) = w ⇒ λ(w) = m] By stability of µ and µ′, this holds.

[λ(w) = m ⇒ λ(m) = w] Let M ′ = {m : λ(m) ∈ W} = {m : µ(m) ∈ W or µ′(m) ∈ W}.
By the only if direction, λ(M ′) is contained in {w : λ(w) ∈ M} which (by definition of λ)

equals W ′ = {w : µ(w) ∈ M and µ′(w) ∈ M}, which is the same size as µ(W ′). But λ(M ′)

is the same size as M ′ (since λ(m) = λ(m′) = w only if m = m′ = λ(w)), which is at least

as large as µ(W ′), so λ(M ′) and W ′ are the same size and λ(M ′) = W ′. Hence for w ∈ W ′,

λ(w) = m for some m ∈M ′, so λ(w) = m. If w is not in W ′ then λ(w) = w. So if λ(w) = m

then λ(m) = w.

From a symmetric argument, ν is also a matching.

Step 2: λ is stable.

Suppose (m,w) blocks λ. Then w �m λ(m) and m �w λ(w). w �m λ(m) implies that

w �m µ(m) and w �w µ′(m). If λ(w) = µ(w), then (m,w) blocks µ (contradiction!). If

λ(w) = µ′(w), then (m,w) blocks µ′ (contradiction!). This shows that λ is stable.

By the symmetric argument ν is also stable.

• We can think of λ as asking men to point to their preferred mate from two stable

matchings, and asking women to point to their less preferred mate.

• Theorem 4 says that:

– No two men point to the same woman.

– Every woman points back at the man pointing to her.

– The resulting matching is stable.

Example 6 (The lattice of stable matchings (Knuth)).

P (m1) = w1, w2, w3, w4 P (w1) = m4,m3,m2,m1

P (m2) = w2, w1, w4, w3 P (w2) = m3,m4,m1,m2

P (m3) = w3, w4, w1, w2 P (w3) = m2,m1,m4,m3

P (m4) = w4, w3, w2, w1 P (w4) = m1,m2,m3,m4
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There are then stable matchings where w1, w2, w3 and w4 are matched respectively to

µ1 : m1 m2 m3 m4

µ2 : m2 m1 m3 m4

µ3 : m1 m2 m4 m3

µ4 : m2 m1 m4 m3

µ5 : m3 m1 m4 m2

µ6 : m2 m4 m1 m3

µ7 : m3 m4 m1 m2

µ8 : m4 m3 m1 m2

µ9 : m3 m4 m2 m1

µ10 : m4 m3 m2 m1

We can see that
µ2 ∧M µ3 = µ4 µ2 ∨M µ3 = µ1

µ5 ∧M µ6 = µ7 µ5 ∨M µ6 = µ4

µ8 ∧M µ9 = µ10 µ8 ∨M µ9 = µ7

The lattice structure with the stable matchings can be represented as follows:

µ1

µ4

µ7

µ10

µ3µ2

µ5 µ6

µ8 µ9

♦

Lemma 2 (Decomposition lemma (Knuth)). Let µ and µ′ be stable matchings in (M,W,�),

where all preferences are strict. Let M(µ) be the set of men m such that µ(m) �m µ′(m) and

W (µ) be the set of women w such that µ(w) �w µ
′(w). Analogously define M(µ′) and W (µ′).

Then µ and µ′ map M(µ′) onto W (µ) and M(µ) onto W (µ′).

Proof. Suppose m ∈ M(µ′). Since µ′(m) �m µ(m) %m m, we have µ′(m) ∈ W . Let w =
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µ′(m). If µ′(w) �w µ(w), (m,w) blocks µ (contradiction!). Thus, since the preferences are

strict, µ(w) �w µ
′(w) and so w = µ′(m) ∈ W (µ). This implies µ′(M(µ′)) ⊂ W (µ).

On the other hand, suppose w ∈ W (µ). Since µ(w) �w µ
′(w) %w w, we have µ(w) ∈ M .

Let m = µ(w). If µ(m) �m µ′(m), (m,w) would block µ′ (contradiction!). Thus, since the

preferences are strict, µ′(m) �m µ(m) and so m ∈M(µ′). This implies µ(W (µ)) ⊂M(µ′).

Since µ and µ′ are one-to-one and M(µ′) and W (µ) are finite, the conclusion follows.

Theorem 5. In a market (M,W,P ) with strict preferences, the set of people who are single

is the same for all stable matchings.

Proof. Suppose m was matched under µ′ but not under µ. Then m ∈ M(µ′). But, from

Lemma 2, µmapsW (µ) ontoM(µ′), som is also matched under µ. This is a contradiction.

Theorem 6 (Weak Pareto optimality for the men). There is no individually rational match-

ing µ (stable or not) such that µ �m µM for all m in M .

Proof. If µ were such a matching it would match every man m to some woman w who

had rejected him in the algorithm in favor of some other man m′ (i.e., even though m was

acceptable to w). Hence all of these women, µ(M), would have been matched under µM . That

is, µM(µ(M)) = M . Hence all of M would have been matched under µM and µM(M) = µ(M).

But since all of M are matched under µM , any woman who gets a proposal in the last step of

the algorithm at which proposals were issued has not rejected any acceptable man, that is,

the algorithm stops as soon as every woman in µM(M) has an acceptable proposal. So such

a woman must be single at µ (since every man prefers µ to µM), which contradicts the fact

that µM(M) = µ(M).

Example 7. µM is not in general (strongly) Pareto efficient for men.

Consider a marriage market (M,W,P ) with M = {m1,m2,m3}, W = {w1, w2, w3}, and

P (m1) = w2, w1, w3 P (w1) = m1,m2,m3

P (m2) = w1, w2, w3 P (w2) = m3,m1,m2

P (m3) = w1, w2, w3 P (w3) = m1,m2,m3

.

Then

µM =
w1 w2 w3

m1 m3 m2

.

Let

µ =
w1 w2 w3

m3 m1 m2

.
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Then, µ �M µM . ♦

1.3 Strategic behavior

• The deferred acceptance algorithm is decentralized in the sense that each man (woman)

sequentially makes an offer to a woman (man) to be matched with and each woman

decides whether to accept the offer or not.

• The same outcome can be obtained under the centralized matching mechanism in which

the men and the women submit a list of their preferences to the social planner and the

social planner decides the matching that is obtained under the deferred acceptance

algorithm according to the submitted preferences. ⇒ Revelation principle

The preference revelation mechanism: φ

• A clearing house fix an matching mechanism φ that assigns each preference profile Q

to a matching φ(Q).

Here, Q is a stated preference profile that is not necessarily equal to the true preference

profile P .

• A matching mechanism φ is Pareto optimal (or Pareto efficient), if φ always yields a

Pareto optimal matching for any preference profile P .

• A matching mechanism φ is a stable matching mechanism, if φ always yields a stable

matching for any preference profile P .

• Consider an agent i whose true preference is Pi which is represented with %i. A strategy

(a stated preference Qi) for agent i is a dominant strategy if, for all Q−i,

φ(Qi, Q−i) %i φ(Q′i, Q−i)

for all Q′i (stated preferences).

• A matching mechanism φ is strategyproof, if it makes it a dominant strategy for each

agent to state his/her true preferences.
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Example 8 (A strategyproof and Pareto optimal matching). Place the men in some order

m1,m2, . . . ,mn. Consider a matching mechanism φ that matches m1 to his stated first choice,

m2 to his stated first choice of possible mates remaining after m1’s matched woman is removed

from the market, and any mk to his stated first choice after m1’s, m2’s, . . . mk’s matched

women are removed from the market. Then, φ is strategyproof and Pareto optimal. But, φ

is not a stable matching mechanism. ♦

Example 9. Consider a marriage market (M,W,P ) with M = {m1,m2,m3,m4,m5}, W =

{w1, w2, w3, w4}, and

P (m1) = w1, w2, w3, w4 P (w1) = m2,m3,m1,m4,m5

P (m2) = w4, w2, w3, w1 P (w2) = m3,m1,m2,m4,m5

P (m3) = w4, w3, w1, w2 P (w3) = m5,m4,m1,m2,m3

P (m4) = w1, w4, w3, w2 P (w4) = m1,m4,m5,m2,m3

P (m5) = w1, w2, w4

The M -optimal stable matching is

µM =
w1 w2 w3 w4 (m5)

m1 m2 m3 m4 m5

.

Consider now the preference P ′ in which all agents except w1 state their preferences as P

but w1 misrepresents her preferences by stating

P ′(w1) = m2,m3,m4,m5,m1

Then, the resulting matching µ′M is

µ′M =
w1 w2 w3 w4 (m5)

m3 m1 m2 m4 m5

.

Note that w1 becomes better off by misrepresenting P ′ for her preference. ♦

Theorem 7 (Impossibility Theorem, Roth). No stable matching mechanism exists for which

stating the true preferences is a dominant strategy for every agent.

Proof. For the proof, one example for which no stable matching mechanism induces a dom-

inant strategy is sufficient. Consider a marriage market (M,W,P ) with M = {m1,m2},
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W = {w1, w2}, and

P (m1) = w1, w2 P (w1) = m2,m1

P (m2) = w2, w1 P (w2) = m1,m2

.

Then there are two stable matchings:

µM =
w1 w2

m1 m2

µW =
w1 w2

m2 m1

.

If φ(P ) = µM , then w1 has an incentive to state that m2 is only acceptable man (stating

%′w1
). Note that the stable matching mechanism φ should yield µW under the misrepresen-

tation of w1’s preference. If φ(P ) = µW , then m1 has an incentive to state that w1 is only

acceptable woman. Note that the stable matching mechanism φ should yield µM under the

misrepresentation of m1’s preference.

• One might think from the proof of Theorem 7 that situations in which some agent can

profitably manipulate his preferences are rare. But the next proposition says that such

situations are not rare.

Theorem 8. When any stable mechanism is applied to a marriage market in which pref-

erences are strict and there is more than one stable matching, then at least one agent can

profitably misrepresent his or her preferences, assuming the others tell the truth. (This agent

can misrepresent in such a way as to be matched to his or her most preferred achievable mate

under the true preferences at every stable matching under the misstated preferences.)

Proof. By assumption, µM 6= µW . Suppose that when all agents state their true preferences,

the mechanism selects a stable matching µ 6= µW . Let w be any woman such that µW (W ) �w

µ(w). (So w is not single at µW .) Now let w misrepresent her preferences by removing from

her stated preference list of acceptable men all men who rank below µW (w). Note that µW

will still be stable under these new preferences.

Let µ′ be the stable matching selected by the mechanism for these new preferences. By

Theorem 5, w is not single at µ′ and hence she is matched with someone she likes at least as

well as µW (w). In fact, since µ′ is also stable under the original preferences, it follows that

µ′(w) = µW (w). But w prefers µW (w) to µ(w) so she prefers any stable µ′ under the new

preferences to µ.
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If the mechanism originally selects the matching µW , then the symmetric argument can

be made for any man m who strictly prefers µM . This completes the proof.

Theorem 9 (Dubins and Freedman, Roth). The mechanism that yields the M-optimal stable

matching (in terms of the stated preferences) makes it a dominant strategy for each man

to state his true preferences. (Similarly, the mechanism that yields the W -optimal stable

matching makes it a dominant strategy for every woman to state her true preferences.)

Theorem 10 (Dubins and Freeman). Let P be the true preferences of the agents, and let P̄

differ from P in that some coalition M̄ of the men misstate their preferences. Then there is

no matching µ, stable for P̄ , which is preferred to µM by all members of M̄ .

2 Many-to-one matching: The College Admissions Model

• A college admission market (S,C, q, P ) consists of:

– a finite set of students S,

– a finite set of colleges C,

– a profile of quota q = (qc)c∈C, where qc > 0 is a quota for each c ∈ C, and

– a preference profile P .

P (c) is a preference relation college c ∈ C over S ∪ {c}.
P (s) is a preference relation student s ∈ S over C ∪ {s}.

• Otherwise noted, we assume that the colleges and the students have strict preferences.

• We represents the college’s preference Pc and student’s preference Ps similarly to the

marriage market.

We also use the notation %c and %s for the college c’s preference and the student s’s

preference, respectively.

• Because the colleges enroll a group of students, we need to specify how college’s pref-

erences over the collection of the sets of students are related to their preferences over

individual students.

• Responsive preferences: for any set of students S ⊂ S with |S| < qc, and any students

s and s′ ∈ S\S,
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– S ∪ {s} �c S ∪ {s′} iff s �c s
′, and

– S ∪ {s} �c S iff s is acceptable to c.

• Responsiveness of preference implies that the students are independent to the college’s

preference.

• Note that, although a college has a complete preference over the set of students, the

responsiveness of preference over the collection of the sets of students does not ensure

the completeness.

However, there is a preference over the collection of the sets of students that is respon-

sive, complete, and transitive.

• Given the preference of college over the collection of the sets of students, we can define

the preference of the college on the matchings:

µ �c µ
′ ⇐⇒ µ(c) �c µ

′(c)

• For a college admission market, a matching µ is a mapping from C ∪ S into the set of

unordered families of elements of C ∪ S such that:

– |µ(s)| = 1 for all s ∈ S and µ(s) = s if µ(s) /∈ c;

– |µ(c)| = qc for all c ∈ C and, if |µ(c) ∩ S| < qc, then µ(c) contains qc − |µ(c) ∩ S|
copies of c;

– µ(s) = c if and only if s ∈ µ(c).

• Representation of matching µ:

(S,C, q, P ) with S = {s1, s2, s3, s4, s5}, C = {c1, c2}, and q = (3, 2);

µ =
c1 c2 (s4)

s1s3c1 s2s5 s4
.

• A matching µ is individually irrational if µ(s) = c for some student s and college c such

that either the student is unacceptable to the college or the college is unacceptable to

the student.

An individually irrational matching is said to be blocked by the relevant individual.
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• A matching µ is blocked by a college-student pair (c, s), if they prefer each other to the

matching µ:

– s �c s
′ for some s′ ∈ µ(c) or s �c c if |µ(c) ∩ S| < qc;

– c �s µ(s).

• As in the marriage model, a matching is (pairwise) stable, if it is not blocked by any

individual or pair of agents.

• Colleges enroll to multiple students, it might not be enough to concentrate only on

pairwise stability.

However, the assumption of responsive preferences allows us to do this.

• A matching µ is blocked by a group A of colleges and students if there exists another

matching µ′ such that for all students s ∈ A and all colleges c ∈ A,

– µ′(s) ∈ A;

– µ′(s) �s µ(s);

– s′ ∈ µ′(c) implies s′ ∈ A ∪ µ(c), i.e., every college A is matched at µ′ to new

students only from A, although it may continue to be matched with some of its

“old” students from µ. (This differs from the definition of core.)

– µ′(c) �c µ(c)

• A matching is group stable, if it is not blocked by a group of any size.

Lemma 3. When college preferences are responsive, a matching is group stable if and only

if it is (pairwise) stable.

Proof. Pairwise instability clearly implies group instability.

Now suppose µ is blocked via group A and outcome µ′. Then there must be a student

s ∈ A and a college c ∈ A such that s ∈ µ′(c) but s /∈ µ(c). So, s and c block µ (Otherwise

it couldn’t be that µ′(c) �c µ(c), since c has responsive preferences).

• Recall that

– S: set of (group) stable matchings.

– CW : weak core.
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– CS: (strong) core.

Lemma 4. In the many-to-one matching model with strict preferences,

S = CS ⊆ CW .

College proposing deferred acceptance algorithm

Step 1:

• Each college c proposes to its qc best choice students (if there are less acceptable choices

then all of them).

• Each student rejects any unacceptable proposals and, if more than one acceptable

proposal is received, “holds” the most preferred.

• If no proposals are rejected, and match each student to the college (if any) whose

proposal she is “holding” and terminate the procedure.

Step k:

Any college who was rejected by l students at step k− 1 makes qc− l new proposals to

its most preferred acceptable students who has not yet rejected it. (If less acceptable

choices remain, it proposes to all of its remaining acceptable students)

Each student “holds” her most preferred acceptable offer to date, and rejects the rest.

If no proposals are rejected, match each student to the college (if any) whose proposal

she is “holding” and terminate the procedure.

Student proposing deferred acceptance algorithm

Step 1:

Each student s proposes to her best acceptable college.

Each college c rejects any unacceptable proposals and, if more than qc acceptable pro-

posals are received, “holds” the most preferred qc group of students, if less than qc

acceptable proposals are received, it temporarily holds all of them.
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If no proposals are rejected, and match each college to the student (if any) whose

proposal it is “holding” and terminate the procedure.

Step k:

Any student who was rejected at step k−1 makes a new proposal to her most preferred

acceptable college which has not yet rejected her.

Each college “holds” its most preferred qc acceptable offers from this step and the ones

it is holding from the previous step, and rejects the rest, if there are more than qc of

them. Otherwise, it “holds” all of the acceptable offers from this step and the ones from

the previous step. It rejects all unacceptable offers from this step

If no proposals are rejected, match each student to the college (if any) whose proposal

she is “holding” and terminate the procedure.

• Both of the above algorithms find stable matchings.

• Student proposing mechanism finds the student-optimal stable matching.

College proposing mechanism finds the college-optimal stable matching.

• Lattice property of stable matchings still holds in a rather strong form.

• Student-optimal stable mechanism is still incentive compatible for students in dominant

strategies. (But why?)

A related marriage market

• Replace college c by qc positions of c denoted by c1, c2, . . . , cqc . Each of these positions

has c’s preferences over individuals.

Since each position ci has a quota of 1, we do not need to consider preferences over

groups of students.

• Each student’s preference list is modified by replacing c, wherever it appears on his list,

by the string c1, c2, ..., cqc , in that order.

• A matching µ of the many-to-one matching corresponds to a matching µ′ in the re-

lated marriage market, in which the students in µ(c) are matched, in the order which
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they occur in the preferences �c, with the ordered positions of c that appear in the

related marriage market. (If preferences are not strict, there will be more than one such

matching.)

Lemma 5. A matching of the many-to-one matching market is stable if and only if the

corresponding matching of the related marriage market is stable.

(Note: some results from the marriage model will translate immediately)

Theorem 11. When all preferences over individuals are strict, the set of students enrolled

and positions filled is the same at every stable matching.

The proof is immediate via the similar result for the marriage market and the construction

of the corresponding marriage market (Lemma 5).

So any college that fails to fill all of its positions at some stable matching will not be able

to fill any more positions at any other stable matching. The next result shows that not only

will such a college fill the same number of positions, but it will fill them with exactly the

same students at any other stable matching.

Theorem 12 (Rural hospitals theorem). When preferences over individuals are strict, any

college that does not fill its quota at some stable matching is assigned precisely the same set

of students at every stable matching.

Proof. This is proved by Lemma 6.

Lemma 6. Suppose colleges and students have strict individual preferences. Let µ and µ′ be

stable matchings for (S,C, q, P ), such that µ(c) 6= µ′(c) for some c ∈ C. Let µ̂ and µ̂′ be the

stable matchings corresponding to µ and µ′ in the related marriage market. If µ̂(ci) �c µ̂
′(ci)

for some position ci of c, then µ̂(ci) %c µ̂
′(ci) for all positions ci of c.

Proof. It is enough to show that µ̂(cj) �c µ̂
′(cj) for all j > i. So, suppose that this is false.

Then, there exists an index j such that µ̂(cj) �c µ̂
′(cj), but µ̂′(cj+1) %c µ̂(cj+1). Theorem

11 implies µ̂′(cj) ∈ S. Let s′ ≡ µ̂′(cj). By the Decomposition Lemma, cj ≡ µ̂′(s′) �s′ µ̂(s′).

Furthermore, µ̂(s′) 6= cj+1, since s′ �c µ̂
′(cj+1) %c µ̂(cj+1) (where the first of these preferences

follows from the fact that for any stable matching µ̂′ in the related marriage market, µ̂(cj) �c

µ̂′(cj+1) for all j). Therefore, cj+1 comes right after cj in the preferences of s′ (or any s) in

the related marriage market. So, µ̂ is blocked via s′ and cj+1, contradicting (via Lemma 5)

the stability of µ.
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Theorem 13. Let preferences over individuals be strict, and let µ and µ′ be stable matchings

for (S,C, q, P ). If µ(c) �c µ′(c) for some college c, then s �c s′ for all s ∈ µ(c) and

s′ ∈ µ′(c)−µ(c). That is, c prefers every student in its assignment at µ to every student who

is in its assignment at µ′ but not at µ.

Proof. Consider the related marriage market and the stable matchings µ̂ and µ̂′ corresponding

to µ and µ′. Let qc = k, so that the positions of c are c1, . . . , ck. First, observe that c fills its

quota under µ and µ′ since, if not, Theorem 12 would imply that µ(c) = µ′(c). So, µ′(c)−µ(c)

is nonempty subset of S, since µ(c) 6= µ′(c). Let s′ = µ̂′(cj) for some position cj such that s′

is not in µ(c). Then, µ̂(cj) 6= µ̂′(cj). By Lemma 6, µ̂(cj) �c µ̂
′(cj) = s′. The Decomposition

Lemma implies cj �s′ µ̂(s′). So the construction of the related marriage market implies

c �s′ µ(s′), since µ(s′) 6= c. Thus, s �c s
′ for all s ∈ µ(c) by the stability of µ, which

completes the proof.

• Consider a college c with qc = 2 and preferences over individuals

s1 �c s2 �c s3 �c s4.

Suppose that at various matchings 1-4, c is matched to

(matching 1) {s1, s4}

(matching 2) {s2, s3}

(matching 3) {s1, s3}

(matching 4) {s2, s4}

• Which matchings can be simultaneously stable for some responsive preferences over

individuals?

• So long as all preferences over groups are responsive, matchings 1 and 2 cannot both

be stable (Lemma 6), nor can matchings 3 and 4 (Theorem 13).

Theorem 14. A stable matching procedure which yields the student-optimal stable matching

makes it a dominant strategy for all students to state their true preferences.

Proof. The result is immediate from the related marriage market.

Theorem 15. No stable matching mechanism exists that makes it a dominant strategy for

all colleges to state their true preferences.
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Proof. Consider a college admission market (C,S, q, P ) with 3 colleges and 4 students. c1

has a quota of 2 and both other colleges have a quota of 1. The preferences are

c1 : s1 � s2 � s3 � s4 s1 : c3 � c1 � c2

c2 : s1 � s2 � s3 � s4 s2 : c2 � c1 � c3

c3 : s3 � s1 � s2 � s4 s3 : c1 � c3 � c2

s4 : c1 � c2 � c3

The unique stable matching is

µ =
c1 c2 c3

s3s4 s2 s1
.

But, if c1 instead submitted the preferences

c1 : s1 � s4,

the unique stable matching is

µ′ =
c1 c2 c3

s1s4 s2 s3
.

Note that µ′ �c1 µ.
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