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1 Common ownership economy

House allocation problem

• A house allocation problem is a triple (A,H,�) where

– A = {1, 2, . . . , n} is a set of agents;

– H = {h1, h2, . . . , hn} is a set of houses (or offices, parking spaces, dormitory rooms,

school seats, course seat);

– �= (�i)i∈A is a preference profile, where �i is a strict preference of agent i ∈ A.

Let %i be the weak-preference relation associated with �i.

• Real-life applications:

– Organ allocation (deceased donor waiting list)

– Dormitory room allocation at universities

– Parking space or office allocation at workplaces.

• Given A and H, a problem is only denoted through the preference profile �.

• Solution of a house allocation problem is a matching:

µ : A→ H

µ is a one-to-one and onto function.

1This note is prepared for the class at University of Seoul. This note may have some typos and errors. If
you find any error or typo, please let me know via e-mail (chomhmh@uos.ac.kr).

2Department of Economics, University of Seoul. E-mail: chomhmh@uos.ac.kr
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Given a matching µ, house µi ≡ µ(i) is the assigned house of agent i a under matching

µ.

Given (A,H), let M(A,H) be the set of matchings.

Sometimes, we write M for M(A,H), if there is no confusion.

• A matching µ is Pareto efficient, if there is no other matching ν such that νi %i µi for

all i ∈ A and νi �i µi for some i ∈ A.

• A (deterministic) mechanism φ is a procedure that assigns a matching for each house

allocation problem.

A mechanism φ can be represented as a function, which maps each housing market

(A,H,�) to a matching φ(A,H,�) ∈M(A,H).

With a slight abuse of notation, given A and H, φ can be represented a function that

maps each preference profile � to a matching φ(�) ∈M.

• For notational convenience, for a mechanism φ, φi(�) denotes agent i’s allocation of

house under the matching φ(�). That is, φi(�) ≡ φ(�)(i).

• A mechanism φ is strategyproof (or, (dominant strategy) incentive compatible), if for any

profile �, there is no agent i ∈ A and no preference relation �′i such that

φi(�′i,�−i) �i φi(�i,�−i).

• Given �i and h ∈ H, �′i is a push-up of �i for h, if for all h′ ∈ H, h′ �′i h implies

h′ �i h.

• Consider a strategyproof mechanism φ. If �′i is a push-up of �i for φi(�), then φi(�) =

φi(�′i,�−i).

• A mechanism is Pareto efficient, if it always assigns a Pareto efficient matching for each

preference profile reported.

Serial dictatorship mechanism

• A priority ordering is a function f : {1, 2, . . . , n} → A that is one-to-one and onto.

f(k) is the agent with the kth highest priority under f .
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Let F be the set of orderings.

• A serial dictatorship is defined through a priority ordering of agents.

• Let πf be the serial dictatorship induced by priority ordering f .

• The matching πf (�) is found as follows iteratively: The first agent f(1) gets her first

choice, the second agent f(2) gets her first choice excluding the house assigned to the

first agent,..., kth agent f(k) gets her first choice excluding the houses assigned to the

houses all agents before f(k).

Theorem 1. A serial dictatorship πf is strategyproof.

Proof. Let f be a priority ordering and πf be the induced serial dictatorship. We prove

the theorem by iteration. The first agent f(1) cannot do better than reporting any other

preferences, since she already receives her first choice house under her reported preferences,

......, f(k) cannot do better than reporting her true preferences, since the houses distributed

until f(k) is independent of f(k)’s preferences and f(k) receives her first choice among the

remaining houses given her reported preferences.

Theorem 2. A serial dictatorship πf is Pareto efficient.

Proof. Suppose that µ = πf (�) is the outcome of a serial dictatorship πf for preference profile

�. We prove the theorem by contradiction. Suppose that the serial dictatorship is not Pareto

efficient. There exists a matching ν that Pareto-dominates µ under reported preferences �. In

particular, there exists some agent i ∈ A such that νi �i µi, in particular, let i be the highest

priority agent in f with this property. Let f(k) ≡ i. Since for any other agent j ∈ A\{i},
νj %j µj, for any agent f(l) with l < k (that is f(l) has higher priority than f(k) ≡ i),

we have ν(f(l)) = µ(f(l)). Therefore, in serial dictatorship πf , when it is f(k)’s turn to

choose, houses νi and µi are still available. However, she chooses µi = πfi (�) in the serial

dictatorship contradicting νi �i µi. So there is no matching that can Pareto-dominate µ.

Hence, µ = πf (�) is Pareto efficient.

• A relabeling r is a permutation of houses.

For any house h ∈ H, h is called r(h) under relabeling r.

• Let �r be the preference profile under which each house h is replaced with its new

name r(h).
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• A mechanism φ is neutral, if when we relabel the houses (rename the houses), the

mechanism assigns each agent the relabeled version of the old house that she was

assigned.

Formally, a mechanism φ is neutral, if for any relabeling r and any preference profile

�, we have

φi(�r) = r(φi(�))

for any agent i ∈ A.

• It is straightforward to see that a serial dictatorship πf is neutral.

• A mechanism is non-bossy, if the outcome of the mechanism remains unchanged when an

agent’s assigned house remains the same even though she manipulates her preferences.

Formally, a mechanism φ is non-bossy, if for any i ∈ A, for any �i,�′i and �−i,

φi(�′i,�−i) = φi(�i,�−i) =⇒ φ(�′i,�−i) = φ(�i,�−i)

Theorem 3. A serial dictatorship πf is non-bossy.

Proof. Let f be a priority ordering and � be a preference profile. We prove the theorem by

iteration.

Consider f(1). Suppose that she changes her preferences to �′f(1) and still obtains house

πff(1)(�f(1),�−f(1)). Since the remaining houses and the preferences are the same under both

(�f(1),�−f(1)) and (�′f(1),�−f(1)), the outcome does not change.

Now consider f(k). First of all, notice that she cannot change the distributed houses to

the agents ordered before her by changing her preferences. Second, using the same idea, if

she obtains the house

πff(k)(�f(k),�−f(k))

by changing her preferences to �′f(k), we have

H\ ∪ki=1 {π
f
f(k)(�′f(i),�−f(i))}

= H\ ∪ki=1 {π
f
f(k)(�f(i),�−f(i))}

.

Therefore, since the other agents have the same preferences, the agents who are ordered after

f(k) also get the same houses. Hence, the outcome of the mechanism does not change.
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• A mechanism φ is group-strategyproof (or, (strongly) group incentive compatible), if there

is no set B ⊆ A and preferences �′B,�B and �−B such that for every agent i ∈ B,

φi(�′B,�−B) %i φi(�B,�−B)

and for some agent i ∈ B,

φi(�′B,�−B) �i φi(�B,�−B).

Theorem 4 (Pápai (2000)). A mechanism φ is group-strategyproof if and only if it is non-

bossy and strategyproof.

Proof. (⇒) It is obvious that group-strategyproofness implies strategyproofness. To see that

group-strategyproofness implies non-bossiness, suppose that φ is not non-bossy. Then, for

some i, i′ ∈ A, and for some �′i and �i,

φi(�′i,�−i) = φi(�i,�−i)

but

φi′(�′i,�−i) 6= φi′(�i,�−i).

This means that φi′(�′i,�−i) �i′ φi′(�i,�−i) or φi′(�i,�−i) �i′ φi′(�′i,�−i) holds. If φi′(�′i
,�−i) �i′ φi′(�i,�−i), B = {i, i′} with (�i,�−i) has an incentive to misrepresent their

preferences as (�′i,�−i) . If φi′(�i,�−i) �a′ φi′(�′a,�−i), B = {i, i′} with (�′i,�−i) has an

incentive to misrepresent their preferences as (�i,�−i).
(⇐) Suppose that φ is not group-strategyproof. Then, there exists B ⊂ A such that, for

all i ∈ B,

φi(�′B,�−B) %i φi(�)

for some �= (�B,�−B) and �′B. Without loss of generality, let B = {1, . . . ,m}. For each

i ∈ B, let�oi be agent i’s preference that preserves the ordering of�i except that φi(�′B,�−B)

is on the top in her list. By strategyproofness,

φ1(�o1,�−1) = φ1(�)
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should hold. Then, by non-bossiness,

φ(�o1,�−1) = φ(�).

Repeating the same argument for agents 2, . . . ,m, we have φ(�oB,�−B) = φ(�). Now, note

that for all i ∈ B, �oi is a push-up of �′i, for φi(�′B,�−B), so that φ(�oB,�−B) = φ(�′B,�−B),

by strategyproofness and non-bossiness. Thus, φ(�′B,�−B) = φ(�), which implies that φ is

group-strategyproof.

Theorem 5 (Svensson (1999)). A mechanism is strategyproof, non-bossy and neutral if and

only if it is a serial dictatorship.

Proof. (⇐) This is proved in the above theorems.

(⇒) Let φ be an strategyproof, non-bossy and neutral mechanism. We need to show that

there exists a priority ordering f such that πf (�) = φ(�) for any preference profile �. We

construct f iteratively as follows: Let � be a preference profile such that for all i ∈ A,

h1 �i h2 �i . . . �i hn. For each i, Let f(i) be agent who receives hi under φ(�). That is,

f(1) is the agent who receives h1, f(2) is the agent who receives h2, and so on. Clearly,

πf (�) = φ(�).

Without loss of generality, let 1 = f(1), 2 = f(2), . . . , n = f(n).

Let �′ be any preference profile. Let us relabel houses so that agent 1’s first choice under

�′ is now called h1, agent 2’s first choice in H\{h1} under �′ is now called h2, ......, agent

k’s first choice in H\{h1, . . . , hk−1} under �′ is now called hk....... Let r be this relabeling.

Note that

πfk (�′r) = hk = πfk (�) (1.1)

for any k ∈ {1, 2, . . . , n}.
We will prove that φk(�′r) = hk by induction. Consider agent 1. By strategyproofness of

φ, we have

φ1(�′r1 ,�−1) %′r1 φ1(�) = h1

implying that φ1(�′r1 ,�−1) = h1 = φ1(�). By non-bossiness of φ, we have

φ(�′r1 ,�−1) = φ(�).

Let k > 1. Assume that for any i < k, we have φ(�′r{1,...,i},�−{1,...,i}) = φ(�). Consider

agent k.
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By strategyproofness of φ, we should have

φk(�′r{1,...,k},�−{1,...,k}) %′rk φk(�′r{1,...,k−1},�−{1,...,k−1}) = φk(�) = hk.

By construction of hk, it holds that φk(�′r{1,...,k},�−{1,...,k}) ∈ {h1, . . . , hk}. In addition, by

strategyproofness of φ, we should have

hk = φk(�) = φk[�′r{1,...,k−1},�−{1,...,k−1}] %k φk(�′r{1,...,k},�−{1,...,k}),

which implies φk(�′r{1,...,k},�−{1,...,k}) ∈ {hk, . . . , hn}. Thus, we obtain that

φk(�′r{1,...,k},�−{1,...,k}) = hk = φk(�′r{1,...,k−1},�−{1,...,k−1}).

By non-bossiness of φ,

φ(�′r{1,...,k},�−{1,...,k}) = φ(�′r{1,...,k−1},�−{1,...,k−1}).

Now, we have

φ(�′r) = φ(�) = πf (�) (1.2)

We have
φ(�′) = r−1(φ(�′r)) by neutrality of φ

= r−1(πf (�)) by (1.2)

= r−1(πf (�′r)) by (1.1)

= πf (�′) by neutrality of πf

Corollary 1. Non-bossiness, strategyproofness and neutrality imply Pareto-efficiency.

• A mechanism that is non-bossy, strategyproof, but not neutral:

Let A and H be fixed. Let f be a priority ordering in which agent 1 is in the first place,

agent 2 is in the second place, and g be a priority ordering in which agent 2 is in the

first place and agent 1 is in the second place. Let the rest of the orderings f and g be

the same. Mechanism φ̃ is defined as follows: When h1 is a 1’s first choice φ̃ chooses

the matching selected by serial dictatorship πf , and otherwise φ̃ chooses the matching

selected by serial dictatorship πg .
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• φ̃ is strategyproof:

Only agent 1 can change the order, so for all other agents the mechanism is a serial

dictatorship. Hence, it is a dominant strategy to tell true preferences for all agents

i ∈ A\{1}. What about agent 1? She can only change the order by putting h1 in the

first place or not. Two cases:

– If h1 is her first choice, if she tells the truth, she will pick first and she will get h1,

so in this case she has no incentive to lie.

– If h1 is not her first choice, if lies and lists h1 first, then she will get h1, since

she will pick first. When she tells the truth, in this case h1 is her second choice

or less. In this case, she is guaranteed to get at least her second choice, since she

picks second. Therefore, the house she gets in this case is weakly better than h1,

concluding the proof.

• φ̃ is non-bossy:

Take i ∈ A\{1}. Let �i, �′i, and �−i be such that φ̃i(�′i,�−i) = φ̃i(�). If agent i did

not change the order by submitting �′i instead of �i, clearly φ̃(�′i,�−i) = φ̃(�) by non-

bossiness of serial dictatorship. Suppose i = 1 and she changes the order by submitting

�′i instead of �i. In both cases, she gets h1. Therefore, agent 2 gets the same house

under both matchings φ̃(�′i,�−i) and φ̃(�) implying that the other agents receive the

same houses (since their rankings are the same under f and g). So, φ̃(�′i,�−i) = φ̃(�)

concluding the proof.

• φ̃ is not neutral:

Consider a relabeling in which h1 is relabeled as h2 and h2 is relabeled as h1. And let

agent 1 and agent 2 like h1 as their first choice and like h2 as their second choice under

�. We have φ̃1(�) = h1 but

φ̃1(�r) = h1 = r(h2) 6= r(φ̃1(�)) = h2.

• Homework: Find a mechanism that is bossy, strategyproof and neutral.

• Homework: Find a mechanism that is non-bossy, non-strategyproof and neutral mech-

anisms.
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• Theorem 4 means that, if a matching is obtained from a serial dictatorship, then it is

Pareto efficient. One may be interested in the opposite direction.

Theorem 6 (Abdulkadiroğlu and Sönmez (1998)). For every Pareto efficient matching in a

house allocation problem, there is a serial dictatorship that achieves it.

Proof. Let µ be a Pareto efficient matching. Given a matching, construct a binary relation

on the agents as follows. For i and j, j �P i if and only if µ(j) �i µ(i).

Suppose that the binary relation �P has a cycle. Then, the agents involved in this cycle

can be better off by exchanging their houses in matching µ. This contradicts that the µ is

Pareto efficient. Thus, the binary relation �P does not have a cycle.

Then, we can easily construct a binary relation �R that is complete and transitive and

agrees with �P . This binary relation �R determines the priority ordering under which the

serial dictatorship yields the matching µ.

• At the first glance, the serial dictatorship seems undesirable since it discriminates be-

tween the agents.

However, this undesirability can be easily handled by randomly choosing an ordering

for the agents.

• A random serial dictatorship is a mechanism that randomly chooses an ordering with

uniform distribution and then applies the induced simple serial dictatorship.

• A random serial dictatorship generates a lottery mechanism in the sense that the mech-

anism generates a lottery over the matchings.

• Suppose mechanisms are defined under variable populations and A be the global set

of potential agents. A mechanism is consistent, if upon removal of agents and their

assignments from a problem, its outcome for the remaining agents stays unchanged

when the mechanism is re-executed in the remaining problem.

Theorem 7 (Ergin (2000)). A mechanism is consistent, Pareto efficient and neutral if and

only if it is a serial dictatorship.

Corollary 2. Consistency, Pareto efficiency and neutrality imply group-strategyproofness.
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2 Private ownership economy

Housing market

• A housing market is a list (A,H,�).

– A = {1, 2, . . . , n}is a set of agents;

– H = {h1, h2, . . . , hn} is a set of houses with each hi being owned by agent i;

– �= (�i)i∈A is a preference profile, where �i is a strict preference of agent i.

Let %i be the weak-preference relation associated with �i.

• A housing market is a non-transferable utility (NTU) cooperative game.

• An outcome of a housing market is a matching µ, which is a one-to-one and onto

function:

µ : A→ H.

µi ≡ µ(i) has the same meaning as in the house allocation problems.

Given (A,H), let M(A,H) be the set of matchings.

• A matching µ is (weakly) blocked by a coalition B ⊂ A, if there is another matching ν

such that

– for any i ∈ B, ν(i) = hl for some l ∈ B, and

– for any i ∈ B, ν(i) %i µ(i) and for some i ∈ B, ν(i) �i µ(i).

• A matching µ is individually rational, if it is not blocked by B = {i} for any i ∈ A.

Any individually rational matching µ satisfies that for each i ∈ A, µ(i) %i hi.

• A matching µ is Pareto efficient, if it is not blocked by B = A.

• A (strong) core is the set of matchings µ that are not blocked by any coalition B ⊆ A.

A core matching is a matching in the core.

• Any core matching is individually rational and Pareto efficient.
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• A mechanism φ is also defined as the same way in house allocation problems. That

is, a mechanism is a function that maps each housing market (A,H,�) to a matching

φ(A,H,�) ∈M(A,H).

Again, given that A and H are fixed, φ can be represented a function that maps each

preference profile � to a matching φ(�) ∈M.

For natational convenience, for a mechanism φ, φi(�) denotes agent i’s allocation of

house under the matching φ(�). That is, φi(�) ≡ φ(�)(i).

• For mechanisms, Pareto efficiency, strategyproofness, and group-strategyproofness have

the same definitions as in house allocation problems.

• A mechanism φ is Pareto efficient, if it always assigns a Pareto efficient matching for

each preference profile.

• A mechanism φ is strategyproof, if for any profile �, there is no agent i ∈ A and no

preference relation �′i such that

φi(�′i,�−i) �i φi(�i,�−i).

• A mechanism φ is group-strategyproof, if there is no set B ⊆ A and preferences �′B,�B
and �−B such that for every agent i ∈ B,

φi(�′B,�−B) %i φi(�B,�−B)

and for some agent i ∈ B,

φi(�′B,�−B) �i φi(�B,�−B).

Gales top-trading cycles (TTC) algorithm

• Consider an iterative algorithm over a directed graph with houses and agents as the

nodes, which constructs a matching as follows in several steps.

• Step 1: Let each agent point to the owner of her most preferred house. Then, there is

necessarily a cycle and no two cycles intersect (since preferences are strict). Remove all

cycles from the problem by assigning each agent the house whose owner she is pointing

to.
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...

• Step k: Let each remaining agent point to the owner of her most preferred house among

the remaining houses. Again, there is necessarily a cycle and no two cycles intersect.

Remove all cycles from the problem by assigning each agent the house whose owner she

is pointing to.

...

• Continuing this procedure until all agents are assigned a house and removed from the

problem.

Example 1 (Gale’s Top Trading Cycles Algorithm). Let A = {1, 2, . . . , 16} with each i owns

a house hi. Let the preference profile � be given as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

h15 h3 h1 h2 h9 h6 h6 h6 h11 h7 h2 h4 h6 h8 h1 h5

... h4 h3
...

...
... h7 h12

... h3 h4 h14 h13
...

...
...

...
...

...
... h12 h16

...
...

h10

...

Step 1: 1− h15 ; 15− h1 ; 6− h6

Step 2: 3− h3 ; 13− h13 ; 7− h7

Step 3: 2− h4 ; 4− h2

Step 4: 16− h5 ; 5− h9 ; 9− h11 ; 11− h16 ; 12− h14 ; 14− h8 ; 8− h12

Step 5: 10− h10

Outcome:

ψ(�) =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

h15 h4 h3 h2 h9 h6 h7 h12 h11 h10 h16 h14 h13 h8 h1 h5

♦

• It turns out that the core has a unique matching µ̄ and Gale’s TTC algorithm results

in this matching µ̄.
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The matching in the core is called a core matching

The mechanism that coincides with Gale’s TTC algorithm is called a core mechanism.

In this section, we denote the core mechanism by φ̄.

Theorem 8 (Shapley and Scarf (1974), Roth and Postlewaite (1977)). In every housing

market, the core is nonempty and it is a singleton.

Proof. Let µ be the matching obtained as the result of Gale’s TTC algorithm.

We first show that µ is in the core. Suppose that µ is blocked by a coalition B via some

matching ν. Let C1, . . . , CK be the sets of agents in the cycles (in the order they are removed)

in Gale’s TTC algorithm. That is, Ck is the set of agents who are removed in step k in Gale’s

TTC algorithm. Note that no agent in C1 can be made better off over µ. If C1 ∩ B 6= ∅,

then C1 ⊂ B. Since each agent in C1 should get their first choice under µ, they would get

each other’s endowment under ν and would be indifferent with respect to µ. Then, B\C1

blocks µ via ν as well. Consider B\C1 and ν. No agent in C2 ∩ (B\C1) can be made better

off. If C2 ∩ (B\C1) 6= ∅, then C2 ⊂ B. Then, B\(C1 ∪C2) blocks µ via ν. Iteratively, we can

continue and finally reach a contradiction that ∅ blocks µ via ν.

Next, we want to show that there is no other matching in the core. Consider a matching

ν 6= µ. Let agent j be the first agent who satisfies ν(j) 6= µ(j) during Gale’s TTC algorithm

(according to the order of the cycles C1, . . . , CK , and if there are multiple agents in a cycle

like j, choose one of them arbitrarily). Let j be in cycle Ck. For every agent i assigned before

the cycle Ck, ν(i) = µ(i) holds. Given this, for every agent i ∈ Ck, µ(i) %i ν(i) for all i ∈ Ck.
Then, we have µ(j) �j ν(j) by strictness of preferences. In addition, for each agent i ∈ Ck,
µ(i) = hm for some m ∈ Ck by construction of µ and Ck. Hence, Ck blocks ν via µ. This

completes the proof.

Theorem 9 (Roth (1982)). The core mechanism φ̄ is strategyproof.

Proof. Let φ̄ be the core mechanism. Let � be a preference profile. Let C1, . . . , Ck, . . . CK be

the sets of agents removed in each step k in Gale’s TTC mechanism in the construction of

µ = φ̄(�). We prove the theorem by iteration on cycles.

Each agent in C1 receives her first choice under µ with respect to �. So, none of these

agents will benefit by reporting a different preference relation. Moreover, observe that C1

will form as it is in Step 1, regardless of any agent in A\C1 submits a different preference

relation.
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...

Each agent in Ck receives her first choice under µ in H\ ∪k−1
i=1 {µ(Ci)} with respect to

�. Since the previous cycles are unaffected by them reporting different preferences, if one

agent changes her preferences still the same houses will be assigned to the agent in ∪k−1
i=1Ci.

Therefore, this agent will not benefit by misreporting her preferences under Gale’s TTC

algorithm. This completes the proof.

Theorem 10 (Ma (1994)). A mechanism is strategyproof, Pareto efficient, and individually

rational if and only if it is the core mechanism φ̄.

Proof. (⇐) This part is already proven.

(⇒) Let φ be a strategyproof, Pareto efficient, and individually rational mechanism. Let

� be an arbitrary preference profile. We will first create a preference profile �′ from �. Then,

by showing φ(�′) = φ̄(�′) and φ(�) = φ(�′), we will completes the proof.

Let µ̄ = φ̄(�). Since µ̄ is individually rational, µ̄(l) %l hl for each agent l ∈ A. For each

l, define �′l as follows:

− If µ̄(l) 6= hl, then squeeze hl just below µ̄(l) (i.e., µ̄(l) is the last acceptable house)

and do not change the relative ordering of other houses. We have h �′l h′ if and only if

h �l h′ for any h, h′ ∈ H\{hl} and hl �′l h if and only if µ̄(l) �′l h for any h ∈ H\{hl}.

− If µ̄(l) = hl, then �′l=�l.

Observe that this operation does not change the core. That is, φ̄(�′) = φ̄(�) = µ̄.

Claim 1: φ(�′) = φ̄(�′).

Let µ′ = φ(�′). Let C1, C2, ..., Ck be the sets of agents removed in the cycles during Gale’s

TTC algorithm for �. We prove Claim 1 by iteration.

Suppose that for some agent l ∈ C1, µ′(l) 6= µ̄(l). By individual rationality of φ, we have

µ′(l) = hl. But by individual rationality of φ, we have µ′(i) = hi for each i ∈ C1. Now instead

of all these agents getting their endowments (which are their second choices under �′), if

they got their first choices, and rest of the matching µ′ did not change, this new matching

Pareto-dominates µ′ under �′. This contradicts that φ is PE under �′. This shows that for

all i ∈ C1, µ′(i) = µ̄(i) holds.

Suppose that for some agent l ∈ C2 we have µ′(l) 6= µ̄(l). Since all the better houses than

µ̄(l) are distributed to agents in Cl under µ′. By a similar argument then by IR of φ, we have

µ′(i) = hi for every i ∈ C2. Instead of all these agents getting their endowments (which are
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ranked lower than their assignments under µ̄ under �′), we can assign them their assignments

under µ̄ keeping the rest of the matching µ′ intact, this new matching Pareto-dominates µ′,

contradicting φ is PE under �′.

We showed that for any agent i ∈ C2, µ′(i) = µ̄(i) holds. Continuing this procedure proves

Claim 1.

Note that Claim 1 also shows that φ(�′) is the unique Pareto-efficient and individually

rational matching under �′.

Claim 2: φ(�) = φ(�′).

We prove Claim 2 by induction. Let B = {i} ⊆ A. By SP of φ,

φi(�i,�′−i) %i φi(�′)
φi(�′) %′i φi(�i,�′−i)

Since φ satisfies IR, the above relation implies that

φi(�i,�′−i) = φi(�′)

Therefore, while problems (�i,�′−i) and �′ differ in preferences of agent i, her assignment

under φ does not differ in these two problems. Hence matching φ(�i,�′−i) not only has to be

Pareto efficient and individually rational under (�i,�′−i) but also under �′ and therefore by

the fact that φ(�′) = φ̄(�′) and φ̄(�′) is the unique Pareto efficient and individually rational

matching under �′, we have

φ(�i,�′−i) = φ(�′)

Let k > 1. In the inductive step, assume that for any B ⊆ A with |B| ≤ k,

φ(�B,�′−B) = φ(�′). (2.1)

Fix B ⊆ A such that |B| = k + 1. Fix i ∈ B. By strategyproofness of φ, we have

φi(�B,�′−B) %i φi(�B\{i},�′−(B\{i}))

φi(�B\{i},�′−(B\{i})) %′i φi(�B,�′−B)
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The above relation and the construction of %′i imply that

φi(�B,�′−B) = φi(�B\{i},�′−(B\{i})) = φi(�′), (2.2)

where the second equality follows from the inductive assumption (2.1) (since |B\{i}| = k).

Since the choice of i ∈ B is arbitrary, (2.2) holds for all i ∈ B. Therefore, while problems

(�B,�′−B) and �′ differ in preferences of agents in B, there assignments under φ do not

differ in these two problems. Hence, matching φ(�B,�′−B) not only has to be Pareto efficient

and individually rational under (�B,�′−B) but also under �′, and therefore by uniqueness of

φ(�′) as PE and IR matching under �′, we have

φ(�B,�′−B) = φ(�′)

completing the induction and the proof of Claim 2 and Theorem 10.

• Homework: Find a Pareto efficient, strategyproof, but not individually rational mech-

anism

• Homework: Find an strategyproof, individually rational, but not Pareto efficient

mechanism.

• Homework: Find a Pareto efficient, individually rational, but not strategyproof mech-

anism.

• In housing markets, we can think of competitive equilibrium.

• Let p = (ph1 , ..., phn) be the vector of house prices.

phi is the price of house hi.

• A house hm is affordable for an agent i at p if phm ≤ phi (budget set).

• A matching µ and price vector p is a competitive equilibrium, if for any agent i, µ(i) is

the best house that are affordable for i at prices p.

• In housing markets, core matching can be achieved as a competitive equilibrium.

Theorem 11 (Shapley and Scarf (1974)). In each housing market, there is a competitive

equilibrium that yields the core matching.
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Proof. Let � be a preference profile and let C1, C2, . . . , Ck be the cycles encountered in order

in Gale’s TTC algorithm for this market. Let price vector p be such that for any cycle Cm

and for any agent l ∈ Cm such that phl = qm for some constant qm (each house in a cycle

has the same price) and let qm > qm+1 for any m ∈ {1, 2, ..., k − 1} (houses in earlier cycles

have higher price). Let µ̄ = φ̄(�). Observe that (µ̄, p) is a competitive equilibrium: µ̄(l) is

an affordable house for every agent l, since pµ̄(l) = phl . No agent i likes some house allocated

in a later cycle more than µ̄(i). No agent can afford any house allocated in an earlier cycle.

Hence every agent is allocated the best house she can afford.

• Homework: Prove that for each housing market, the competitive equilibrium matching

is unique.

(Hint: This result is analogous to the competitive equilibrium allocation being in the

core of an exchange economy.)

• For the mechanisms in housing markets, non-bossiness can be defined in the same way

as in house allocation problems.

A mechanism φ is non-bossy, if for any i ∈ A, for any �i,�′i and �−i,

φi(�′i,�−i) = φi(�i,�−i) =⇒ φ(�′i,�−i) = φ(�i,�−i)

• Homework: Show that the core mechanism φ̄ is non-bossy.

Theorem 12. Strategyproofness, Pareto-efficiency, and individual rationality imply non-

bossiness.

Proof. The result directly follows from Theorem 10 and the non-bossiness of the core mech-

anism.

• Core mechanism can be applied to house allocation problems: randomly endow the

initial houses to the agents with a uniform distribution, and then apply the core mech-

anism.

This mechanism is called a core from random endowments.

• Core from random endowments is also a lottery mechanism, because it generates a

lottery over the matchings.
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• What is a relationship between the random serial dictatorship and the core from random

endowments? ⇒ Theorem 13.

Theorem 13 (Abdulkadiroğlu and Sönmez (1998)). In house allocation problems, core from

random endowments and random serial dictatorship are equivalent.

3 Mixed ownership economy

House allocation problem with existing tenants

• A house allocation problem with existing tenants is a five-tuple (AE, AN , HO, HV ,�)

where

– AE is a finite set of existing tenants;

– AN is a finite set of newcomers;

– HO = {hi}i∈AE
is a finite set of occupied houses;

– HV is a finite set of vacant houses where h0 ∈ HV denotes the null house;

– �= (�i)i∈AE∪AN
is a preference profile, where �i is a strict preference of agent

i ∈ AE ∪ AN .

Let %i be the weak-preference relation associated with �i.

• The mechanism known as random serial-dictatorship with squatting rights is used in

most real-life applications of these problems:

(a) Each existing tenant decides whether she will enter the housing lottery or keep her

current house. Those who prefer keeping their houses are assigned their houses. All

other houses (vacant houses and houses of existing agents who enter the lottery)

become available for allocation.

(b) An ordering of agents in the lottery is randomly chosen from a given distribution

of orderings. This distribution may be uniform or it may favor some groups.

(c) Once the agents are ordered, available houses are allocated using the induced serial

dictatorship: The first agent receives her top choice, the next agent receives her

top choice among the remaining houses and so on.
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• Some examples of this mechanism include undergraduate housing at Carnegie-Mellon,

Duke, Michigan, Northwestern and Pennsylvania.

• Since it does not guarantee each existing tenant a house that is as good as her own,

some existing tenants may choose to keep their houses even though they wish to move,

and this may result in loss of potentially large gains from trade.

• Hence, this popular mechanism is neither ex-post individually rational nor ex-post

Pareto efficient.

You request my house-I get your turn (YRMH-IGYT) mechanism

• Fix an ordering of agents.

• Assign the first agent her top choice, the second agent her top choice among the re-

maining houses, and so on, until someone requests the house of an existing tenant.

• If at that point the existing tenant whose house is requested is already assigned an-

other house, then do not disturb the procedure. Otherwise modify the remainder of the

ordering by inserting the existing tenant to the top of the line and proceed with the

procedure.

• Similarly, insert any existing tenant who is not already served at the top of the line

once her house is requested.

• If at any point a cycle forms, it is formed by exclusively existing tenants and each of

them requests the house of the tenant who is next in the cycle. (A cycle is an ordered

list (1, . . . , k) of existing tenants where agent 1 demands the house of agent 2, agent

2 demands the house of agent 3, ..., agent k demands the house of agent 1.) In such

cases, remove all agents in the cycle by assigning them the houses they demand and

proceed.

• We denote yf the YRMH-IGYT mechanism.

Example 2. Let

AE = {1, 2, 3, 4, 5, 6, 7, 8, 9}
AN = {10, 11, 12, 13, 14, 15, 16}
HO = {h1, h2, h3, h4, h5, h6, h7, h8, h9}
HV = {h10, h11, h12, h13, h14, h15, h16}
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Here hi is the current house of existing tenant i ∈ AE. Let the preference profile � be given

as
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

h15 h3 h1 h2 h9 h6 h6 h6 h11 h7 h2 h4 h6 h8 h1 h5

... h4 h3
...

...
... h7 h12

... h3 h4 h14 h13
...

...
...

...
...

...
... h12 h16

...
...

h10
...

...

Let the ordering of the agents be given by

13− 15− 11− 14− 12− 16− 10− 1− 2− 3− 4− 5− 6− 7− 8− 9

Step 1: 6− h6

Step 2: 13− h13

Step 3: 1− h15; 15− h1

Step 4: 3− h3

Step 5: 4− h2; 2 = h4

Step 6: 11− h16

Step 7: 8− h8; 14− h8

Step 8: 12− h14

Step 9: 9− h11; 5− h9; 16− h3

Step 10: 7− h7

Step 11: 10− h10

Theorem 14 (Abdulkadiroğlu and Sönmez (1999)). Any YRMH-IGYT mechanism yf is

individually rational, strategyproof, and Pareto efficient.

• Key innovation in this mechanism is that an existing tenant whose current house is

requested is upgraded to the first place at the remaining of the line before her house is

allocated.

Therefore, it is individually rational.

• A mechanism φ is weakly neutral, if labeling of vacant houses has no effect on the

outcome of the mechanism.
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• A mechanism φ is consistent, if the removal of a set of agents, their assignments, and a

set of unassigned houses does not affect the assignments of remaining agents provided

that the removal results in a well-defined reduced problem.

Theorem 15 (Sönmez and Ünver (2010)). A mechanism is Pareto efficient, individually

rational, strategyproof, consistent and weakly neutral if and only if it is the YRMH-IGYT

mechanism yf .
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